Monday, July 15, 2013

WORLD OF ELECTRIC MOTOR (Types Classification and History of Motor)

The motor or an electrical motor is a device that has brought about one of the biggest advancements in the fields of engineering and technology ever since the invention of electricity. A motor is nothing but an electro-mechanical device that converts electrical energy to mechanical energy. Its because of motors, life is what it is today in the 21st century. Without motor we had still been living in Sir Thomas Edison’s Era where the only purpose of electricity would have been to glow bulbs. There are different types of motor have been developed for different specific purposes.
In simple words we can say a device that produces rotational force is a motor. The very basic principal of functioning of an electrical motor lies on the fact that force is experienced in the direction perpendicular to magnetic field and the current, when field and electric current are made to interact with each other. Ever since the invention of motors, a lot of advancements has taken place in this field of engineering and it has become a subject of extreme importance for modern engineers. This particular webpage takes into consideration, the above mentioned fact and provides a detailed description on all major electrical motors and motoring parts being used in the present era.

Classification or Types of Motor

The primary classification of motor or types of motor can be tabulated as shown below,


types of motor


In the year 1821 British scientist Michael Faraday explained the conversion of electrical energy into mechanical energy by placing a current carrying conductor in a magnetic field which resulted in the rotation of the conductor due to torque produced by the mutual action of electrical current and field. Based on his principal the most primitive of machines a D.C.(direct current) machine was designed by another British scientist William Sturgeon in the year 1832. But his model was overly expensive and wasn’t used for any practical purpose. Later in the year 1886 the first electrical motor was invented by scientist Frank Julian Sprague. That was capable of rotating at a constant speed under a varied range of load, and thus derived motoring action.
MAIN CLASSIFICATION 

1) DC Motor

2) Synchronous Motor

3) 3 Phase Induction Motor

4) 1 Phase Induction Motor

5) Special Types of Motor
Among the four basic classification of motors mentioned above the DC motor as the name suggests, is the only one that is driven by direct current. It’s the most primitive version of the electric motor where rotating torque is produced due to flow of electric current through the conductor inside a magnetic field.
Rest all are A.C. electrical motors, and are driven by alternating current, for e.g. the synchronous motor, which always runs at synchronous speed. Here the rotor is an electro – magnet which is magnetically locked with stator rotating magnetic field and rotates with it. The speed of these machines are varied by varying the frequency (f) and number of poles (P), as Ns = 120 f/P.
In another type of AC motor where rotating magnetic field cuts the rotor conductors, hence circulating current induced in these short circuited rotor conductors. Due to interaction of the magnetic field and these circulating currents the rotor starts rotates and continues its rotation. This is induction motor which is also known as asynchronous motor runs at a speed lesser than synchronous speed, and the rotating torque, and speed is governed by varying the slip which gives the difference between synchronous speed Ns , and rotor speed speed Nr,
It runs governing the principal of EMF induction due to varying flux density, hence the name induction machine comes. Single phase induction motor like a 3 phase, runs by the principal of emf induction due to flux, but the only difference is, it runs on single phase supply and its starting methods are governed by two well established theories, namely the Double Revolving field theory and the Cross field theory.
Apart from the four basic types of motor mentioned above, there are several types Of special electrical motors like Linear Induction motor(LIM),Stepper motor, Servo motor etc with special features that has been developed according to the needs of the industry or for a particular particular gadget like the use of hysteresis motor in hand watches because of its compactness.

animated dc motor

Synchronous Motor

Electrical Motor in general is an electromechanical device that converts energy from electrical domain to mechanical domain. Based on the type of input we have classified it into single phase and 3 phase motors. Among 3 phase motors Induction and synchronous motors are more widely used.
When a 3 phase electric conductors are placed in a certain geometrical positions (In certain angle from one another) there is an electrical field generate. Now the rotating magnetic field rotates at a certain speed, that speed is called synchronous speed. Now if an electromagnet is present in this rotating magnetic field, the electromagnet is magnetically locked with this rotating magnetic field and rotates with same speed of rotating field. Synchronous motors is called so because the speed of the rotor of this motor is same as the rotating magnetic field. It is basically a fixed speed motor because it has only one speed, which is synchronous speed and therefore no intermediate speed is there or in other words it’s in synchronism with the supply frequency. Synchronous speed is given by

Construction of synchronous motor

Normally it’s construction is almost similar to that of a 3 phase induction motor, except the fact that the rotor is given dc supply, the reason of which is explained later. Now, let us first go through the basic construction of this type of motor

basic construction of synchronous motor
From the above picture, it is clear that how this type of motors are designed. The stator is given is given three phase supply and the rotor is given dc supply

Main features of synchronous motors are

Synchronous motors are inherently not self starting. They require some external means to bring their speed close to synchronous speed to before they are synchronized.

• The speed of operation of is in synchronism with the supply frequency and hence for constant supply frequency they behave as constant speed motor irrespective of load condition

• This motor has the unique characteristics of operating under any power factor. This makes it being used in power factor improvement.

Principle of Operation Synchronous Motor

Synchronous motor is a doubly excited machine i.e two electrical inputs are provided to it. It’s stator winding which consists of a 3 phase winding is provided with 3 phase supply and rotor is provided with DC supply. The 3 phase stator winding carrying 3 phase currents produces 3 phase rotating magnetic flux. The rotor carrying DC supply also produces a constant flux. Considering the frequency to be 50 Hz, from the above relation we can see that the 3 phase rotating flux rotates about 3000 revolution in 1 min or 50 revolutions in 1 sec. At a particular instant rotor and stator poles might be of same polarity (N-N or S-S) causing repulsive force on rotor and the very next second it will be N-S causing attractive force. But due to inertia of the rotor, it is unable to rotate in any direction due to attractive or repulsive force and remain in standstill condition. Hence it is not self starting.
To overcome this inertia, rotor is initially fed some mechanical input which rotates it in same direction as magnetic field to a speed very close to synchronous speed. After some time magnetic locking occurs and the synchronous motor rotates in synchronism with the frequency.

Methods of starting of Synchronous Motor

• Synchronous motors are mechanically coupled with another motor. It could be either 3 phase induction motor or DC shunt motor. DC excitation is not fed initially. It is rotated at speed very close to its synchronous speed and after that DC excitation is given. After some time when magnetic locking takes place supply to the external motor is cut off.

• Damper winding : In case, synchronous motor is of salient pole type, additional winding is placed in rotor pole face. Initially when rotor is standstill, relative speed between damper winding and rotating air gap flux in large and an emf is induced in it which produces the required starting torque. As speed approaches synchronous speed , emf and torque is reduced and finally when magnetic locking takes place, torque also reduces to zero. Hence in this case synchronous is first run as induction motor using additional winding and finally it is synchronized with the frequency.

Application of Synchronous Motor

• Synchronous motor having no load connected to its shaft is used for power factor improvement. Owing to its characteristics to behave at any power factor, it is used in power system in situations where static capacitors are expensive.

• Synchronous motor finds application where operating speed is less (around 500 rpm) and high power is required. For power requirement from 35 kW to 2500KW, the size, weight and cost of the corresponding induction motor is very high. Hence these motors are preferably used. Ex- Reciprocating pump, compressor, rolling mills etc

Working Principle of Three Phase Induction Motor

An electrical motor is such an electromechanical device which converts electrical energy into a mechanical energy. In case of three phase AC operation, most widely used motor is Three phase induction motor as this type of motor does not require any starting device or we can say they are self starting induction motor.
For better understanding the principle of three phase induction motor, the basic constructional feature of this motor must be known to us. This Motor consists of two major parts:

Stator: Stator of three phase induction motor is made up of numbers of slots to construct a 3 phase winding circuit which is connected to 3 phase AC source. The three phase windings are arranged in such a manner in the slots that they produce a rotating magnetic field after AC is given to them.
Rotor: Rotor of three phase induction motor consists of cylindrical laminated core with parallel slots that can carry conductors. Conductors are heavy copper or aluminum bars which fits in each slots & they are short circuited by the end rings. The slots are not exactly made parallel to the axis of the shaft but are slotted a little skewed because this arrangement reduces magnetic humming noise & can avoid stalling of motor.

Working of Three Phase Induction Motor
Production Of Rotating Magnetic field
The stator of the motor consists of overlapping windings offset by an electrical angle of 120°. When the primary winding or the stator is connected to a 3 phase AC source, it establishes a rotating magnetic field which rotates at the synchronous speed.
Secrets behind the rotation:
According to Faraday’s law an emf induced in any circuit is due to the rate of change of magnetic flux linkage through the circuit. As the rotor windings in an induction motor are either closed through an external resistance or directly shorted by end ring, and cut the stator rotating magnetic field, an emf is induced in the rotor copper bar and due to this emf a current flows through the rotor conductor.
Here the relative velocity between the rotating flux and static rotor conductor is the cause of electric current generation; hence as per Lenz’s law the rotor will rotate in the same direction to reduce the cause i.e. the relative velocity.
Thus from the working principle of three phase induction motor it may observed that the rotor speed should not reach the synchronous speed produced by the stator. If the speeds equals, there would be no such relative velocity, so no emf induction in the rotor, & no current would be flowing, and therefore no torque would be generated. Consequently the rotor can not reach at the synchronous speed. The difference between the stator (synchronous speed) and rotor speeds is called the slip. The rotation of the magnetic field in an induction motor has the advantage that no electrical connections need to be made to the rotor.
Thus the Three Phase Induction Motor is:
• Self-starting.

• Less armature reaction and brush sparking because of the absence of commutators and brushes that may cause sparks.

• Robust in construction.

• Economical.

• Easier to maintain.